• 澳门威尼克斯人

    c1bannerpc02.jpg c1bannerpc02-912.jpg

    Driven by Innovation

    Continuous innovation and breakthroughs have been made in the six core directions of manufacturing, technology, materials, cells, structure, and battery monitoring to provide users with a better experience.

    Global Innovation and Research Center

    SVOLT has established six major R&D Centers for global innovation and R&D.

    c1_img01.png
    • 研发.svg

      2500+

      R&D personnel

    • 硕博.svg

      40%+

      Proportion of master's and doctoral degree candidates

    • 产线.svg

      13

      Professional trial production line

    • 专利.svg

      8000+

      Domestic and foreign industry patents

    Core Technology Advantages

    • High safety

      With the goal of preventing thermal spread in the whole package, the safety of the cells is ensured from multiple dimensions, such as the intrinsic safety improvement, safety design of structural components, and the safety redundancy design.

      ARC testing

      • 2-5℃

        T1 improvement

      • 5-10℃

        T2 improvement

      • 50-100℃

        T3 decrease

      c1_img02.jpg
    • Fast charge

      All products have a capacity of 2.2C or above, and the proportion of cells (4C-6C) with higher fast charge capacity is gradually increasing.

      • Cathode system design

        Spot- line conductive additives are adopted to form a conductive network design with strong fast-charging capability to reduce impedance.

      • Anode system design

        Surface amorphous carbon coating material is adopted, with low OI value design.

      • Diaphragm pore design

        Highly porous (40%-50%) high-strength base film is adopted.

      • Design of ultra-high conductivity electrolyte

        Lithium ion conductivity is enhanced by viscosity reducing solvents + low impedance additives.

      c1_img03.jpg
    • High specific energy

      For the square cell, ternary achieves 300Kh/kg, and the iron lithium exceeds 190Kh/kg.

      • Application of cathode and anode materials with high top density and high-gram capacity.

      • Application of pre-lithium technology, double-layer coating, and thick electrode technology.

      • Application of minimalist structures to improve space utilization.

      c1_img04.jpg
    • Long lifespan

      Energy storage of over 8,000 cycles and power of over 3,000 cycles.

      • Cathode selection design

        Iron block + phosphoric acid process is selected for the material precursor, which can prevent the introduction of impurities in the raw material and control the magnetic material content to be ≤ 2ppm.

      • Anode selection design

        Generally, single-particle route is adopted or a certain proportion of secondary particles is mixed. The surface of the particles is smooth, with a small proportion of fine powder and uniform particle size distribution.

      • Diaphragm selection design

        A mixed coating layer isolation film with a coating thickness of 2-3 μm is selected to improve the ability of isolation film to adsorb electrolyte and ensure large surface wetting of the electrode.

      • Electrolyte design

        The proportion of film-forming additives is adjusted to maintain the stability of SEI during the cycling process.

      c1_img05.jpg

    Six Major Innovations

    Continuous innovation and breakthroughs have been made in the six core directions of manufacturing, technology, materials, cells, structure, and battery monitoring to provide users with a better experience.

    • download.jpg
    • c1_img08.jpg
    • 电芯创新.jpg
    • 材料创新背景图 (1).jpg
    • c1_img08.jpg
    • 监控背景图.jpg
    c1_img06.jpg
    • c1_logo01.svg
    • c1_logo02.svg

    Creating Smart Factory System Standards

    SVOLT has successfully established a smart factory system standard to solve industry pain points such as low R&D efficiency, large amount of manual work, large batch quality fluctuations, and extreme manufacturing equipment, providing industry standards for the construction of smart factories. At present, the smart factory model is being replicated in multiple manufacturing bases across the country, promoting the intelligent transformation and upgrading of the new energy industry, and supporting the national energy revolution.

    Exploring the smart factory ecology

    Promoting Intelligent Transformation and
    Upgrading of the New Energy Industry

    • 安全.svg

      Maximum safety

      The safety of batteries comes first. The application of advanced intelligent manufacturing technology is carried out with focus on production and driving safety. During the production process, 5G+ visual inspection and thermal runaway-related application cases are followed to ensure the safety of the production process.

    • 质量.svg

      Top quality

      Due to the complexity of the production process of lithium batteries, IoT technology is used to collect 27000 data points of process, equipment, quality, and products for real-time monitoring and analysis, achieving a closed-loop management of collection-analysis-feedback control.

    • 效率.svg

      Peak efficiency

      The production efficiency of stacking has been improved from 0.6/s per stack (45-degree rotary stacking) in 2019 to 0.125/s per stack (multi-stack cutting, multi-stack stacking) in 2022.

    • 人力.svg

      Minimum manpower

      At present, 90% automation has been achieved in the lithium battery industry in production, and SVOLT realized 100% fully automatic detection and zero leak checks with the help of AI big data technology. Key processes have gradually been launched, and unmanned factories will gradually be achieved in the future.

    友情链接: